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During lift-off, space launchers are submitted to high-level of acoustic loads, which may damage
sensitive equipments. A special acoustic absorber has been previously integrated inside the fairing
of space launchers to protect the payload. A new research project has been launched to develop a
low cost fairing acoustic protection system using optimized layers of porous materials covered by
a thin layer of fabric. An analytical model is used for the analysis of acoustic wave propagation
within the multilayer porous media. Results have been validated by impedance tube measurements.
A parametric study has been conducted to determine optimal mechanical and acoustical properties
of the acoustic protection under dimensional thickness constraints. The effect of the mounting
conditions has been studied. Results reveal the importance of the lateral constraints on the
absorption coefficient particularly in the low frequency range. A transmission study has been carried
out, where the fairing structure has been simulated by a limp mass layer. The transmission loss and
noise reduction factors have been computed using Biot’s theory and the local acoustic impedance
approximation to represent the porous layer effect. Comparisons between the two models show the
frequency domains for which the local impedance model is valid.
© 2009 Acoustical Society of America. �DOI: 10.1121/1.2973197�
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I. INTRODUCTION

The purpose of this paper is to develop an analytical
model permitting the solution of Biot’s equations governing
wave propagation for planar elastic porous layers. The study
aims to design an optimized acoustic protection having a
high acoustic absorption coefficient �AC� in the very low
frequency band �the 63 Hz third octave band�. As described
in Refs. 1–5, original Biot’s equations have been written in
terms of solid and fluid displacements. In Ref. 6, Bonnet
derived basic singular solutions of Biot’s equations. By
eliminating the fluid displacement, he established a system of
four differential equations coupling the skeleton displace-
ment and the acoustic pressure in the interstitial fluid. For
finite element implementation purposes, a mixed displace-
ment pressure integral formulation has been derived by
Atalla et al.7 Boundary conditions associated with the weak
mixed displacement pressure formulation are discussed in
Ref. 8. Previous papers assume that Biot’s parameters are
spatially constant. A modified system of four Biot’s equa-
tions, valid for nonspatially constant Biot’s parameters, was
established by Hamdi et al. in Ref. 9. As described in Refs. 9
and 10, the weak formulation associated with modified Biot’s
equations has the great advantage of leading to natural
boundary conditions at interfaces between adjacent layers.

a�
Electronic mail: jkanfoud@utc.fr

J. Acoust. Soc. Am. 125 �2�, February 2009 0001-4966/2009/125�2
To clarify the approach, the first section of the paper
recalls the system of modified Biot’s equations established in
Ref. 9 in terms of the skeleton displacement vector and of
the pressure inside the interstitial acoustic medium saturating
the pores.

The second section derives analytical solutions of the
modified Biot’s equations propagating in planar and laterally
infinite porous layers of finite thickness. Boundary condi-
tions associated with the system of four differential equations
are specified at interfaces between adjacent porous layers and
at the interfaces between the porous layers and the fluid gaps.
The case of a heavy septum covering porous layers is also
studied.

The global analytical solution is derived for the case of
an incident acoustic plane wave.

The third section is dedicated to the calculation and op-
timization of the acoustic AC with respect to Biot’s param-
eters and the thickness of porous layers. A new absorber
composed of a foam layer covered by a thin fabric has been
optimized using the proposed analytical model. The results
of the analytical study are validated using impedance tube
measurements showing the effects of mounting conditions.

The fourth section of the paper is dedicated to calcula-
tions of the transmission loss �TL� factor of an impervious
limp mass layer covered by a porous layer and of the noise
reduction �NR� factor corresponding to two limp mass layers
covered by the optimized porous layers and coupled by an

air gap. Interesting new results, showing a comparison of TL
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and NR curves obtained with the classical local acoustic im-
pedance �LAI� and Biot’s models, are presented at the end of
this section. Finally, the last section concludes the paper and
gives a perspective of the present research work.

II. THE MODIFIED BIOT EQUATIONS

Standard Biot equations �Eqs. �1a�, �1b�, �2a�, and �2b��
written in terms of the skeleton displacement vector �Us� and
the fluid displacement vector �Uf� are the following:

��̂sÜ
s + �̂sfÜ

f� = � · �s − b�U̇s − U̇f� , �1a�

��̂sfÜ
s + �̂ fÜ

f� = � · � f − b�U̇f − U̇s� , �1b�

where U̇ and Ü correspond to the velocity and acceleration
vectors of the solid �s� and fluid �f� phases and �s and � f are,
respectively, the solid and fluid stress tensors given in Ref. 2
by

�ij
s = ��P −

2�

3
� � · Us + Q � · Us��ij

+ �� �Ui
s

�xj
+

�Uj
s

�xi
� , �2a�

�ij
f = − �p�ij = �Q � · Us + R � · Us��ij , �2b�

where � is the shear modulus of the skeleton elastic material,
and P, Q, and R are the bulk moduli of the porous media.
According to Ref. 2, they are related to the bulk modulus Ks

of the skeleton elastic material, to the bulk modulus Kf of the
interstitial fluid, to the bulk modulus Kb of the porous frame
at constant pressure in the air, and to the porosity � by the
following expressions:

P =
�1 − ���1 − � − Kb/Ks�Ks + �KsKb/Kf

1 − � − Kb/Ks + �Ks/Kf
, �3a�

Q =
�1 − � − Kb/Ks��Ks

1 − � − Kb/Ks + �Ks/Kf
, �3b�

R =
�2Ks

1 − � − Kb/Ks + �Ks/Kf
. �3c�

The coefficient b appearing on the right hand side of
Eqs. �1a�, �1b�, �2a�, and �2b� corresponds to the viscous
coupling factor, and the other inertial coefficients appearing
on the left side of the above equations are given by the fol-
lowing formulas:

�̂sf = �1 − ����� f , �4a�

�̂ f = �� f − �̂sf = ���� f , �4b�

�̂s = �1 − ���s − �̂sf , �4c�

where �s and � f are the mass densities of the skeleton and of
the interstitial fluid, and ���1 is the high frequency limit of
the dynamic tortuosity of the considered porous media,

2
which is a dimensionless parameter.
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As shown in Ref. 9, for e−i	t harmonic time dependency,
the modified Biot equations can be easily derived by elimi-
nating the fluid phase displacement vector Uf from the sys-
tem of Eqs. �1a�, �1b�, �2a�, and �2b� in terms of the skeleton
displacement, which for simplicity is denoted as U �without
the prefix s� in the rest of the paper, and the interstitial fluid
pressure p:

�̃s	
2U + � · ��s − ��p�� + 
 � ��p� = 0, �5a�

� · � 1

�̃ f	
2 � ��p� − 
U� +

�p

R
+ � � · U = 0. �5b�

The interstitial fluid displacement is related to the gradient of
the acoustic pressure and the skeleton displacement by the
following formula:

Uf =
1

	2�̃ f

� ��p� −
�̃sf

�̃ f

U . �5c�

Equations �5a� and �5b� couple the skeleton displacement U
to the interstitial fluid pressure p.

Effective masses �̃s, �̃ f, and �̃sf appearing in Eqs.
�5a�–�5c� are related to the structure and fluid mass densities
�s and � f, to dimensionless parameters � �porosity� and ��

�tortuosity�, and to the viscous coupling factor b of the po-
rous media,

�̃sf = �1 − ���� f +
b

i	
, �6a�

�̃ f = ��� f −
b

i	
, �6b�

�̃s = �1 − ���s − �1 − ���� f −
�1 − ��2�2� f

2

�̃ f

−
b

i	
. �6c�

According to Ref. 2, the viscous coupling factor b is given
by the following formula:

b =	1 − i	c2��� f

2��
, �7a�

c =
1

�
	8��

��
, �7b�

where � is the flow resistivity  to the viscosity of interstitial
fluid and � is the viscous characteristic length.

Coefficients � and 
 couple the skeleton displacement U
to the fluid pressure p in Eqs. �4a� and �4b�. They correspond
to the dimensionless stiffness and inertial coupling factors.
They are given by

� = 1 +
Q

R
=

�1 − Kb/Ks�
�

, �8a�


 = 1 +
�̃sf

�̃ f

=
� f

�̃ f

. �8b�

In general the bulk modulus Kb is very small compared to the

bulk modulus Ks of the skeleton material �Kb�Ks�, and for-
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mula �8a� shows that the coefficient �� can be approximated
by unity ���
1�.

The total stress tensor �tot applied to an elementary in-
finitesimal volume of the porous material is given by

�tot = �s − ��p� , �9a�

where �s is the stress tensor inside the skeleton elastic ma-
terial, which is given by

�̃ = ���� · U�� + ��� · U + �� · U�T�� , �9b�

where � and � are the Lame coefficients.

III. WAVE PROPAGATION IN POROUS MEDIA

The problem investigated in this paper involves the
propagation of elastic and acoustic waves inside planar lay-
ers of porous material of finite thickness and infinite lateral
dimensions. The explicit expressions of the pressure, the
skeleton, and fluid displacements and stresses can be ex-
pressed in terms of three waves: two longitudinal waves and
a shear wave. The global solution is obtained by superposi-
tion of the forward and backward traveling waves. For each
porous layer there are six waves. Their complex amplitudes
are determined by applying the appropriate boundary condi-
tions.

The porous medium is supposed isotropic homogeneous
and submitted to an incident unitary plane wave propagating
in the x y plane with an angle of incidence � with respect to
the x axis. In such configuration the incident plane wave has
the following expression:

pinc�x,y� = eik0�x cos �+y sin ��, �10�

where k0=	 /c0 is the acoustic wave number 	 is the circular
frequency, and c0 is the speed of sound propagating in the
surrounding acoustic medium at rest. In this case all field
variables inside each porous layer are z independent and con-
sequently have the following form:

p�x,y� = p�x�eik0 sin �.y ,

U�x,y� = U�x�eik0 sin �.y .

All equations can be written in the �x ,y� plane, and since all
variables have the same exponential dependency eik0 sin �.y in
the lateral y direction, the problem reduces to a one-
dimensional x dependency.

A. Wave equations

The skeleton displacement U has only two non-null
components since the third component in the lateral z direc-
tion is identically null. The displacement U could be ex-
pressed in the following form:

U� �x,y� = �� ���x�eik0 sin �.y� + �� ����x�eik0 sin �.yK� � , �11a�

where K� is the unitary vector collinear to the z axis orthogo-
nal to the xy plane of Fig. 1. Substitution of Eq. �11a� in the
system of modified Biot’s equations �Eqs. �3a�–�3c� and
�4a�–�4c�� leads to the following system of three equations:

˜ 2
�s	 � + � �� = 0, �11b�
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�̃s	
2� + �� + 2���� + ��p = 0, �11c�

��p

�̃ f	
2 +

�p

R
− ��� = 0, �11d�

where

� = �
 − �� , �12a�

� =
d2

dx2 − k0
2 sin2 � . �12b�

Substitution of �p from Eq. �11b� to Eq. �11c� leads to
the following equation:

��2 + 	2 R

�̃s
� �̃s

�� + 2��
+

�̃ f

R
+ �2 �̃ f

�� + 2��
��

+
�̃s�̃ f

�� + 2��
	4�� = 0. �13�

Equation �13� can be written in the following form:

�2 + 	2S� + 	4P�� = 0, �14a�

where

S =
R

�̃s
� �̃s

�� + 2��
+

�̃ f

R
+ �2 �̃ f

�� + 2��
� , �14b�

P =
�̃s�̃ f

�� + 2��
. �14c�

Equation �14a� can be factorized in the following form

�� + k1
2��� + k2

2��� = 0, �15a�

where k1 and k2 are the wave numbers corresponding to lon-
gitudinal waves given by

k1
2 =

	2

c1
2 , �15b�

k2
2 =

	2

c2
2 , �15c�

where

c1
2 =

2
2

, �15d�

FIG. 1. Incident plane wave exciting porous layers.
�S + 	S − 4P�
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c2
2 =

2

�S − 	S2 − 4P�
. �15e�

c1 and c2 correspond to the speeds of slow and fast Biot’s
longitudinal waves.

The wave Eq. �11a� can be written as follows:

d2��x�
dx2 + �ks

2 − k0
2 sin2 ����x� = 0, �15f�

where

ks
2 = 	2 �

�̃s

�16a�

corresponds to the square of the shear wave number ks.
Equations �16a� and �16b� have two fundamental solutions,

�+�x� = e+i�s
+x and �−�x� = e−i�s

−x,

where �s
+ and �s

− are the two roots of the dispersion equation,

�s
2 + ks

2 − k0
2 sin2 � = 0. �16b�

Equation �15a� shows that Eq. �13� has two solutions � j�x�
�j=1,2� satisfying

� d2

dx2 + �kj
2 − k0

2 sin2 ���� j�x� = 0 �j = 1,2� . �17a�

Equation �17a� also has two fundamental solutions,

� j
+�x� = e+i�j

+x and � j
−�x� = e−i�j

−x,

where � j
+ and � j

− are the two roots of the dispersion equation,

� j
2 + kj

2 − k0
2 sin2 � = 0. �17b�

Once the shear wave numbers ks and the longitudinal wave
numbers k1 and k2 are computed, there are six independent
fundamental solutions corresponding to the roots of Eqs.
�16b� and �17b�.

The displacement and the pressure fields relative to each
fundamental solution can be computed using Eqs.
�11a�–�11d�. The global solution can be expressed in the fol-
lowing form:

�U

p
� = �

j=1

4

Aj�U

p
�

�j

+ �
l=1

2

Bl�U

0
�

�l

. �18�

The six complex amplitudes can be determined using the
boundary conditions at the layer’s interfaces.

B. Boundary conditions

In this section boundary conditions are written for vari-
ous interfaces.

Air/hard wall interface. The normal component of the
acoustic �prefix 0� displacement is null,

Uz
0 =

1

	2

dp0

dx
= 0.

Porous/hard wall interface. The porous medium can be

considered to be sliding at the hard wall interface,
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Ux
1 = Ux

f1 = 0, �xy
1 = 0.

The porous medium can be fixed at the hard wall interface

Ux
1 = Ux

f1 = 0; Uy
1 = 0.

Air/porous interface. The boundary conditions depend
on the nature of the interface, between the air and the porous
medium. Since the interface could be impervious �closed
cells� or perforated �open cells�, the fluid domain is charac-
terized by prefix �0� and the porous medium is characterized
by prefix �1�.

• perforated interface 0/1: 4 conditions:

�Ux
0 − Ux

1� = �1�Ux
f1 − Ux

1� ,

p0 = p1,

− p0 = �xx
1 ,

�xy
1 = 0.

• impervious interface 0/1: 4 conditions:

Ux
0 = Ux

1,

�Ux
f1 − Ux

1� = 0,

− p0 = �z
1,

�xz
1 = 0.

If the fluid is in direct contact with the porous medium �no
facing film�, the first equation corresponds to the continuity
of the relative fluid flow through the interface. Hence the
second equation expresses the continuity of the pressure
since the interface is perforated. The third and fourth equa-
tions express the continuity of stresses.

If a weightless facing film separates the fluid and porous
media domains, there are two cinematic conditions: the first
equation expresses the continuity of the skeleton and exter-
nal fluid normal components of displacements. The second
equation determines that the air flow is null through the
closed facing film, which is henceforth impervious. The third
and fourth equations translate the continuity of stresses.

The facing mass could be taken into account by modi-
fying the last two equations,

− p0 = �x
1 − m	2Ux

1 and �xy
1 − m	2Uy

1 = 0.

Porous/porous interface. The boundary conditions de-
pend on the nature of the interface, between the two porous
layers since the interface could be impervious �closed cells�
or perforated �open cells�. The left porous domain is charac-
terized by prefix �1�, and the right porous domain is charac-
terized by prefix �2�:

Coupling two porous layers requires six boundary con-
ditions.

• perforated interface 1/2:

U1 = U2,
x x
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Uy
1 = Uy

2,

�x
1 = �x

2,

�xy
1 = �xy

2 ,

p1 = p2,

�1�Ux
f1 − Ux

1� = �2�Ux
f2 − Ux

2� .

• impervious interface 1/2:

Ux
1 = Ux

2,

Uy
1 = Uy

2,

�x
1 = �x

2,

�xy
1 = �xy

2 ,

�Ux
f1 − Ux

1� = 0,

�Ux
f2 − Ux

2� = 0.

The first four equations are identical for the direct and im-
pervious weightless film interface. These equations are simi-
lar to the coupling between elastic layers. The first and sec-
ond equations express the cinematic coupling of the skeleton
displacements. The third and fourth equations express the
continuity of stresses.

The two latter equations depend on the configuration
considered. For direct coupling, we have pressure and air
flow conservation across the interface. For coupling through
an impervious interface, the air flow vanishes for both layers.

When the mass of the facing is taken into account, the
last two equations must be modified as follows:

�x
1 = �x

2 − m	2Ux and �xz
1 = �xz

2 − m	2Uy .

IV. ABSORPTION COEFFICIENT

Two standing wave impedance tubes have been used to
measure the AC of porous material samples �a small tube of
46 mm diameter and a large tube of square cross section of
600�600 mm2�.

FIG. 2. Impedance tube configuration.
As shown in Fig. 2, numerical simulations have been
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restricted to the normal incidence case, and results have been
obtained using the material properties summarized in Table I.
The acoustic AC �abs is defined by the following expression:

�abs = 1 −
Aref

2

Ainc
2 , �19�

where Ainc and Aref are, respectively, the amplitudes of the
incident and reflected waves.

Measurements of the AC were made for bare foam and
for foam covered by a fabric. Results were obtained in the
frequency band ranging from 40 to 250 Hz for the large
square tube and from 100 to 4000 Hz for the small circular
tube. Two configurations were considered. The first one des-
ignated by �B� corresponds to the foam bonded to the termi-
nation of the tube. It was simulated by imposing the zero
displacements of the skeleton and of the fluid. The second
unbonded configuration designated by the symbol �U� is
simulated by adding a thin �1 mm� air-gap between the foam
and the tube termination.

Figure 3 shows good agreement between the experimen-
tal and the numerical results for a bare foam sample of 50
mm thick using both bonded and unbonded boundary condi-
tions. However, to achieve such good agreement, it was nec-
essary to tune the mechanical properties of the skeleton in

TABLE I. Material properties.

Parameters Foam Fabric

Porosity � 99.4% 13%a

Flow resistivity � �N s m−4� 9045 66 639
Viscous length � ��m� 103 7.3a

Thermal length �� ��m� 197 12a

Tortuosity �� 1.02 1a

Skeleton density �s �kg /m3� 8.43 566.67
Young modulus E �kPa� 194.9 50a

Poisson ratio � 0.42 0.3a

Damping factor  5% 0a

Thickness �cm� 10 0.03
Fluid density �0 �kg /m3� 1.213
Fluid celerity c0 �m/s� 342.2

aParameters identified using analytical simulation and correlation with test
data.
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FIG. 3. AC of a bare 5 cm foam layer �U and B configurations�.
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order to adjust the resonance frequency of the porous sample
since the skeleton resonance for the bonded case is con-
trolled for one-dimensional propagation by the parameter
��+2�� appearing in Eq. �11c�. This parameter can be modi-
fied by either changing Young’s modulus or Poisson’s ratio.
Numerical results have been obtained using Young’s modu-
lus of Table I and a modified Poisson’s ratio of 0.3 instead of
0.42. The resonance of the bonded foam occurs around 1
kHz, and there is no resonance for the unbonded configura-
tion.

Three properties of the fabric were directly measured
with acceptable precision: the flow resistivity, the mass den-
sity, and the thickness. The additional Biot parameters
�� ,�� ,� ,��� and mechanical properties �E ,�� have been
numerically identified using the best fit between the calcu-
lated and measured reflection coefficients for two configura-
tions: �i� the fabric clamped in the small impedance tube and
backed by an air gap of 100 mm depth and �ii� the foam
covered by the fabric bonded to the termination of the small
impedance tube.

Figure 4 shows the comparison between the measured
and calculated ACs using the identified fabric parameters
summarized in Table I. The frequencies corresponding to
minimum and maximum values of the AC are well predicted,
but the analytical model underestimates the first maximum
level occurring at 500 Hz and overestimates the following
maximum levels occurring at 2100 and 3750 Hz.

Here, the influence of lateral boundary conditions11–13

has been studied experimentally from the 40 to 250 Hz range
using the large square tube. Measurements were made on a
100 mm thick foam covered by fabric for different lateral
boundary conditions. Figure 5 shows the influence of mount-
ing conditions on the AC. When the fabric and the foam are
simultaneously constrained in the impedance tube, the AC is
higher in the low frequency band typically below 150 Hz and
decreases above 150 Hz in comparison to the two other con-
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FIG. 4. AC measurement and simulation of a clamped fabric backed by a 10
cm cavity.
figurations, where the fabric is not constrained. Below 210
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Hz, the third configuration corresponding to the uncon-
strained foam and fabric leads to the lowest level of the AC.
Hence foam and fabric lateral constraints have similar ef-
fects. Experimental results show the strong influence of lat-
eral boundary conditions on the AC for the low frequency
range.

During the measurement of the AC of the fabric covered
foam, very close attention has been paid to minimize the
influence of lateral mounting conditions. Figure 6 shows
very good agreement between measurements and calcula-
tions for the 100 mm thick bare foam and for the same foam
sample covered by a fabric. However, to obtain such good
agreement the structural loss damping of the foam has been
increased to 18% in the numerical simulation. The fabric
shifts the absolute maximum of the AC down from 750 to
500 Hz, leading to higher absorption below 500 Hz and
lower absorption above 500 Hz. Figure 7�a� shows that the
boundary condition between the foam and the tube termina-
tion has a significant influence only in the low frequency
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FIG. 5. Measurement of the effect of lateral mounting conditions on a 10 cm
foam layer covered by a thin fabric.
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FIG. 6. AC of a bare 10 cm foam layer compared to the foam covered by a

fabric.
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band below 750 Hz for the bare foam and 500 Hz for the
foam covered by the fabric. The resonance of the skeleton is
more pronounced for the bonded configuration. Figure 7�b�
corresponds to a zoom below 500 Hz, showing that the un-
bonded configuration leads to higher absorption from 150 to
500 Hz. On the contrary, below 150 Hz, the bonded configu-
ration leads to higher absorption. Globally, below 500 Hz the
fabric increases significantly the level of AC compared to the
bare foam.

A. The foam sensitivity to resistivity and Young
modulus

In order to maximize the AC of the foam covered by the
fabric in the low frequency band, a parametric study was
conducted on foam material properties. It is well known that
the parameters with most influence are the static air flow
resistivity ��� and the Young modulus �E� of the skeleton.

As shown in Fig. 8, the parametric study highlighted the
existence of an optimal value of the resistivity, leading to an
absolute maximum of the AC of the acoustic protection con-
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FIG. 7. �a� Simulation of the background mounting conditions on bare and
covered 10 cm layers of foam �high frequencies�. �b� Simulation of the
background mounting conditions on bare and covered 10 cm layers of foam
�low frequencies�.
sisting of a fabric covered foam sample. The parametric
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study was conducted at a particular frequency of 63 Hz for
the bonded configuration. Figure 8 shows that a stiffer mate-
rial leads to higher absorption.

Figure 9 shows variation with respect to the resistivity of
the mean value of the AC averaged at the 63 Hz 1/3 octave
band for two values of Young’s modulus. The nominal value
of Young’s modulus of the foam and a higher value �ten
times the nominal value� have been used. Both bonded and
unbonded configurations have been studied, highlighting the
influence of boundary conditions between the foam and the
tube termination.

For the bonded configuration, the absolute maximum of
the AC is obtained for optimal values of resistivity of
40 kN s m−4 for the nominal value of the Young’s modulus
and 50 kN s m−4 for the stiffer foam �ten times�. The un-
bonded configuration requires very high resistive foams. In
this case the optimal value of resistivity is located above
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150 kN s m−4. As expected, Fig. 9 shows that increasing the
foam thickness from 10 to 13.5 cm leads to further improve-
ment of the AC.

V. TRANSMISSION LOSS AND NOISE REDUCTION
FACTORS

Many sound transmission studies have been conducted
on structures lined with porous materials. Bolton et al.,3 Bol-
ton and Shiau,4,5 Bolton and Green,14 and Becot and Sgard15

investigated an analytical model to predict sound transmis-
sion through double structure panels lined with porous layers
simulating a simplified aircraft fuselage. Other researchers
developed various numerical methods to analyze sound ra-
diation and transmission by elastic structures covered by po-
rous elastic layers.16,17

Here, the proposed analytical model is applied to calcu-
late the TL and the NR factors of infinite structure panels
lined by a foam layer covered by a fabric. The structure
panels are represented by a limp mass.

The simple configurations considered try to derive rules
for the design of lightweight acoustic protection to be inte-
grated in the fairing of space launchers. In this context, the
noise TL coefficient is calculated �Fig. 10� by considering a
laterally infinite impervious limp mass of 10 kg /m2, covered
by a porous layer as shown below. The porous layer is 10 cm
thick. Nominal parameters given in Table I are used. A Pois-
son’s ratio of �=0.3 has been used since it led to a better
correlation with measurements.

The TL is defined by the following formula:

TL = 10 log
Ainc

2

Atra
2 , �20�

where Ainc and Atra are the amplitudes of incident and trans-
mitted acoustic waves.

The NR factor simulates the noise level inside a laterally
infinite cavity of finite width �Fig. 11� limited by two panels

FIG. 10. Transmission loss �TL� configuration.
FIG. 11. Noise reduction �NR� configuration.
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represented by limp masses covered by the optimized acous-
tic protection. The NR is defined by the following formula:

NR = 10 log
Ainc

2

Pint
2 , �21�

where Pint
2 is given by

Pint
2 =

1

H
�

0

H

pint�x�pint
� �x�dx , �22�

where P� �x� is the complex conjugate of the internal pres-
sure P�x�.

Figure 12 shows that below 100 Hz, the foam has very
little effect on the TL since the curve coincides with the mass
law. Above 100 Hz, the porous complex enhances the TL in
the case of the unbonded configuration. For the bonded con-
figuration, local frequency drops of the TL curve are ob-
served at porous layer resonance frequencies. A parametric
study has been carried out for fixed mechanical properties of
the skeleton. It shows that the Biot’s parameters related to
the propagation of the airborne wave in the porous medium
have very little effect on the TL curve. The structural reso-
nance frequencies vary mainly with mechanical properties of
the skeleton of the porous layer.

Figure 11 shows an air-filled cavity of width H, limited
at each side by a limp mass layer covered by a porous layer
simulating the acoustic protection. Figure 13 superimposes
TL curves �H→�� to the NR curves obtained for a cavity of
finite width �H=1 m�.

The NR curves obtained with and without the porous
layer oscillate around the corresponding TL curves. Without
the porous layer, sharp peaks appear at the resonances of the
acoustic cavity. The amplitudes of these picks are strongly
attenuated when limp mass layers are covered by the porous
layers simulating the acoustic protection. When the limp
mass is covered by the porous material layers, the NR is very
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FIG. 12. TL of a limp mass lined with an absorbing complex.
close to the TL curve above 500 Hz. Below 500 Hz the
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optimized porous layer is still very efficient. It attenuates the
first acoustic mode by 10 dB, the second by 30 dB, and the
third by more than 40 dB.

In the current state of the art, NR factors of space
structures18 are predicted using the LAI measured in an im-
pedance tube. The value of the local impedance is deter-
mined by placing the porous layer at the termination of an
impedance tube. The associated boundary conditions at the
interface of the acoustic cavity are written as follows:

1

�0

dpint

dx
−

i	

Z
pint = − 	2Us, �23a�

pext − pint = − 	2mUs, �23b�

where �0 is the mass density of air, Z is the LAI of the
porous layer bonded at the termination of the impedance
tube, pint is the internal acoustic pressure, pext is the external
pressure �sum of incident and reflected waves�, and Us is the
displacement of the limp mass m per unit area.

Results corresponding to the LAI model by applying
boundary conditions �23a� and �23b� are compared to those
obtained using the present modified Biot model. Figure 14
superimposes TL and NR curves corresponding to LAI and
present Biot models.

Below 200 Hz, the curves corresponding to the two
models coincide. The two models diverge between 200 and
2000 Hz because the LAI model does not predict the reso-
nances of the porous layer and consequently overestimates
the NR and the TL. Above 2000 Hz the two models start to
converge again.

VI. CONCLUSION

A modified system of Biot equations has been solved
analytically for infinite planar layers of porous media. Vari-
ous acoustic indicators such as the acoustic absorption coef-
ficient �AC�, TL, and NR factors have been computed for
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different configurations. The sensitivity of the acoustic AC to
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the boundary conditions, to the variation of Biot’s acoustical
parameters, and to the mechanical properties of the skeleton
has been thoroughly studied. The analytical results have been
validated by impedance tube measurements, showing good
agreement between experimental and numerical results.

This study demonstrated that the mounting boundary
conditions �lateral and longitudinal� influence the AC in the
low frequency band. The analytical model developed permit-
ted a rapid parametric study to be made of the influence of
the two most significant parameters, which are the static air
flow resistivity and the Young modulus of the porous mate-
rial. For a given low frequency band �1/3 octave�, an optimal
value of the flow resistivity leads to a maximum value of the
AC. Stiff materials �high Young’s modulus� lead to higher
absorption at the low frequency range. For high frequency
bands, the increase in resistivity leads to an enhancement in
the AC. In low frequency bands, the absolute value of the
maximum of the AC is very sensitive to the mechanical
properties of the skeleton and the boundary conditions.

The developed method allowed the calculation of the TL
factor of limp mass panels covered by the optimized acoustic
protection composed by two layers �foam and fabric� of po-
rous materials. It is demonstrated that the TL obtained with
the acoustic protection is always higher than the TL curve of
the classical mass law, except at the first resonances of the
foam layer, where the TL curve drops locally.

The proposed method also permits the calculation of the
NR factor of a simplified structure composed of two limp
mass layers covered by the optimized acoustic protection and
containing an acoustic cavity of finite width. It has been
demonstrated that the optimized acoustic protection is very
efficient. It allows strong damping of internal acoustic reso-
nances.

In addition the developed method allowed the analysis
of results obtained using the approximate LAI model, which
gives good results in low and high frequency limits. In the
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medium frequency range, the LAI model is less accurate than
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the present modified BIOT model since it overestimates the
NR factor near the resonances of the foam layer.
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